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The analysis of multilevel models with continuous outcomes 
in the case of data with weight variables 

 
1.  Introduction 
There has been a growing interest in recent years in fitting models to data collected from 
longitudinal surveys that use complex sample designs. This interest reflects expansion in 
requirements by policy makers and researchers for in-depth studies of social processes over time.  
 
Although structural equation modeling allows for a tremendous flexibility in modeling error 
structures, it is in general not straightforward to analyze nested data structures with it. This, on the 
other hand, is a strong point of multilevel modeling which is also more flexible than structural 
equation modeling when repeated measurement occasions vary between individuals. In order to 
address concerns regarding the appropriate analyses of survey data, the LISREL 8.70 for Windows 
(Jöreskog & Sörbom 2004) multilevel module features an option for users to include design 
weights on levels 1, 2 or 3 of the hierarchy. Correct parameter estimates and robust standard error 
estimates, using a Taylor linearization approach, are produced. 
 
In this document, we describe and illustrate the method used to allow for weights on levels 1, 2 or 3 
of the hierarchy in the multilevel module of LISREL 8.70 for Windows. Section 2 describes the 
general weighting strategy of Pfeffermann et al. (1997). In section 3, a more rigorous theoretical 
treatment of the Section 2 results are given. A practical application of a level 3 model with design 
weights on levels 2 and 3 of the hierarchy is given in Section 4. 
 
 
2. A general weighting procedure 
Pfeffermann et al. (1997) distinguished between two cases. In the first the weights are independent 
of the random effects at the level. In this case they adopt the following procedure. Consider the 
case of a 2 level model. Denote by iw  the weight attached to the i-th level 2 unit and by |j iw  the 
weight attached to the j-th level 1 unit within the i-th level 2 unit such that 

 
| ,j i i i

j i

w n w I= =∑ ∑  

 
where I is the total number of level 2 units and i

i
N n=∑  the total number of level 1 units. That is, 

the lower level weights within each immediate higher level unit are scaled to have a mean of unity, 
and likewise for higher levels. For each level 1 unit we now form the final, or composite, weight 
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Denote by uz , ez  respectively the sets of explanatory variables defining the level 2 and level 1 
random coefficients and form 
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We now carry out a standard estimation but using *
uz , *

ez  as the random coefficient explanatory 
variables. For a 3 level model, with an obvious extension to notation, we have the following 
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Goldstein (1995) also pointed out that in survey work analysts often have access only to the final 
level 1 weights jiw . In this case, say for a 2-level model, we can obtain the iw  by computing 

' ,i i i i ji i
i j

w W I W W w n
⎛ ⎞
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∑ ∑ . For a 3-level model the procedure is carried out for each level 3 

unit and the resulting '
ikw are transformed analogously. 

 
 
 
 
3. Weights in multilevel models 
Let  
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Example (r=1): 

Suppose that '
(1) 1, 1, 2,..., , 1, 2,..., .ij ii I j n= = =x In this case, 2
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2
(1)σ = Φ , a scalar. From the distributional assumptions given above, it follows that 
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Let iV  be a provisional estimate of iΣ , then  
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Using a well-known result for matrix inversion, 
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it follows that 
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4.  Practical application 
A linear growth curve model with two dummy-coded covariates (Lang1 and Lang2) is fitted to a 
simulated dataset surveyhlm.psf in the MLEVELEX folder. It is assumed that the level-3 units are 
schools. 
 
Within each of 100 schools, 10 students are selected on the basis of their initial achievement in an 
aptitude test (Score1) and measurements were repeated over six time intervals for five students 
from each school and over four time intervals for the remaining five. 
 
The table below (Weight3) shows the level-3 weight calculations based on standardized initial 
scores. 
  
 Interval  Lower      Upper    % Expected  % Selected   Weight3 
 -------------------------------------------------------------- 
  1       -Inf        -1.00      15.87       10.00       1.587 
  2       -1.00       -0.70       8.33       10.00       0.833 
  3       -0.70       -0.20      17.88       10.00       1.788 
  4       -0.20        0.00       7.93       10.00       0.793 
  5        0.00        0.30      11.79       10.00       1.179 
  6        0.30        1.00      22.34       10.00       2.234 
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  7        1.00        1.30       6.19       10.00       0.619 
  8        1.30        1.80       6.09       10.00       0.609 
  9        1.80        2.30       2.52       10.00       0.252 
 10        2.30        Inf        1.07       10.00       0.107 
 
 
 Ten students were selected from each school as follows: 
 

• Four from racial group 1 with Weight2 = 7.0/4.0 
• Three from racial group 2 with Weight2 = 2.0/3.0 
• Three from racial group 3 with Weight2 = 1.0/3.0  

 
 
The first 20 records of the dataset in surveyhlm.psf  is shown below. 
 
 

 
 
 
Note that the data were simulated in such a way that odd-numbered students have six score 
measurements at time points 0, 1, 2, 3, 4, 5. The even-numbered students have only four score 
measurements.  
 
The data were simulated according to the following model: 
 

0 1 1 2

0 1 0 1

1 2ijk

i i ij ij ijk

Score Time Lang Lang

v Time v u Time u e

β β γ γ= + ∗ + ∗ + ∗

+ + ∗ + + ∗ +
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where i denotes school i, ij student j in school i and ijk the k-th measurement on student j in school 
i. 
 
The data were simulated under the assumption that 
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and  
 

2 ( ) 1.0ijkVar eσ = = . 
 
To fit a growth model to the data, we proceed as follows. From the main menu bar, select 
Multilevel, Linear Model, Title and Options… as shown below. 
 
 

 
 
 
Type in the title, change the number of iterations to 20 and the convergence criterion to 0.0001. 
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Click the Next button to activate the Identification Variables dialog. Add the level-3 and level-2 
identification variables (School and Student) and also the variables WT3 and WT2 as the level-3 and 
level-2 weights respectively. 
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To continue to the Response and Fixed variables dialog box click Next. Select Score as the 
dependent (response) variable and Time, Lang1 and Lang2 as the fixed variables (predictors). Note 
that an intercept term is automatically included unless the Intercept check box is unchecked. For 
illustrative purposes, Time was added to the Create Dummies for: text box. 
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Finally, add Time as level-2 and level-3 random components (the variances are denoted by 

( )1 2 ,22( )ijVar u φ=  and ( )1 3 ,22( )iVar v φ=  respectively. Note that by default, intercept terms are 
included at the different levels of the hierarchy. The level-1, level-2 and level-3 variance 
components for the intercept are denoted by 2

eσ , ( )2 ,11φ  and ( )3 ,11φ  respectively. 
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When done, click the Finish button to obtain the PRELIS syntax file surveyhlm.pr2. Save this file 
as surveyhlm1.pr2 as shown below. 
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Click the Run PRELIS icon button to invoke the multilevel module. Portions of the output are 
shown below. 
 
(i) Fixed part of the model 
 

 
 
 
Note that a 2χ  scale factor of 0.68009 is reported. This value is used to obtain a corrected 2χ -
statistic for testing one model against another model. 
 
(ii) Random part of the model 
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Note that the parameter estimates reported in the output are generally close to the population values 
which were used to simulate the data. 
 
The standard error estimates shown have been corrected as described in the theoretical part. Note 
that the spreadsheet presentation of surveyhlm.psf will only show the variables School, Student, …, 
WT2, although dummy variables corresponding to the six measurement occasions were written to 
the actual PSF file. To see these dummy variables, close the PSF file (without saving it) and then 
use File, Open to display the modified PSF file.  
 
 

 
 
 
Using the dummy variables, a “saturated model” can be fitted to the data by completing the four 
multilevel dialog boxes as shown below. 
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Note that in the previous model there were 11 parameters (4 fixed and 7 random) estimated and that 
the deviance statistic (-2logL) equals 20291.456. These values are entered in the dialog box above. 
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Note that one cannot add an intercept term to the fixed part of the model when dummy1 to dummy6 
are selected as predictors. If the intercept term is not unchecked, then the fixed parameter 
coefficients can not be estimated, since the fixed-effect design matrix will not be of full rank 
( dummy1 + ... + dummy6=1). 
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Similarly, the intercept terms for the random effects are unchecked and dummy variables one to six 
are only added at levels 2 and 3. 
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Click the Finish button to produce the PRELIS syntax file (which was subsequently saved as 
surveyhlm2.pr2). 
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The portion of the output pertaining to the 2χ  statistic is shown below. Note that the difference in 
the -2log(L) values are 2.335. The 2χ -value of 1.5566 was obtained by multiplying 2.335 with the 
scale factor obtained when design weights are included. 
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