Scientific Software International (SSI) publishes statistical data analysis software: LISREL (structural equation model/SEM, survey generalized linear model/SGLIM), 
HLM (hierarchical linear modeling, multilevel model), SuperMix (mixed models, mixed-effects program, MIXREG, MIXOR, MIXNO and MIXPREG) and Item Response Theory/IRT (BILOG-MG, MULTILOG, PARSCALE)Scientific Software International (SSI) publishes statistical data analysis software: LISREL (structural equation model/SEM, survey generalized linear model/SGLIM), 
HLM (hierarchical linear modeling, multilevel model), SuperMix (mixed models, mixed-effects program, MIXREG, MIXOR, MIXNO and MIXPREG) and Item Response Theory/IRT (BILOG-MG, MULTILOG, PARSCALE)Scientific Software International (SSI) publishes statistical data analysis software: LISREL (structural equation model/SEM, survey generalized linear model/SGLIM), 
HLM (hierarchical linear modeling, multilevel model), SuperMix (mixed models, mixed-effects program, MIXREG, MIXOR, MIXNO and MIXPREG) and Item Response Theory/IRT (BILOG-MG, MULTILOG, PARSCALE)

R  References:
  1. Software
  2. Books
  3. Articles
  4. Journals
  5. Studies
  6. Other useful links
  Software
  • Jöreskog, K.G. & Sörbom, D. (1974). LISREL III [Computer software]. Chicago, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (1978). LISREL IV [Computer software]. Chicago, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (1981). LISREL V [Computer software]. Chicago, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (1984). LISREL VI [Computer software]. Chicago, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (1988). LISREL 7 [Computer software]. Chicago, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (1993). LISREL 8 [Computer software]. Chicago, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (1998). LISREL 8.20 for Windows [Computer software]. Chicago, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (1999). LISREL 8.30 for Windows [Computer software]. Skokie, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (2001). LISREL 8.5 for Windows [Computer software]. Skokie, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (2004). LISREL 8.7 for Windows [Computer software]. Skokie, IL: Scientific Software International, Inc.
  • Jöreskog, K.G. & Sörbom, D. (2006). LISREL 8.8 for Windows [Computer software]. Skokie, IL: Scientific Software International, Inc.
  Books
  Articles

  • Akaike H. (1974). A new look at Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.
  • Akaike H. (1987).Factor Analysis and AIC. Psychometrika, 52, 317-332.
  • Anderson T.W. (1969). Statistical Inference for Covariance Matrices with Linear Structure. In P.R. Krisnaiah (Ed.), Multivariate Analysis, Volume II, pp.55-66. New York: Academic Press.
  • Anderson T.W. (1970). Estimation of Covariance Matrices which are Linear Combinations or whose Inverses are Linear Combination of given Matrices. In R.C. Bose et al (eds), Essays in Probability and Statistics, pp.1-24. Chapel Hill: University of North Carolina Press.
  • Anderson T.W. (1973). Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure. Annals of Statistics, 1, 135-141.
  • Anderson, J.C., & Gerbing, D.W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis.Psychometrika, 49, 155-73.
  • Anderson, J.C., & Gerbing, D.W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103 (3), 411-423.
  • Anderson, J.C., & Gerbing, D.W. (1992). Assumptions and comparative strengths of the two-step approach: Comment on Fornell and Yi. Sociological Methods & Research, 20 (1), 321-333.
  • Bentler, P.M. & Bonett, D.G. (1980). Significance Tests and Goodness of Fit in the Analysis of Covariance Structures.
    Psychological Bulletin, 88, 588-606.
  • Bentler, P.M., & Chou, C.-P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16, 78-117.
  • Bentler, P.M. & Weeks, D.G. (1980). Linear Structural Equations with Latent Variables. Psychometrika, 45, 289-308.
  • Bentler, P.M. (1988). Comparative Fit Indexes in Structural Models. Psychological Bulletin, 107, 238-246.
  • Blozis Shelley A. (2004). Structured Latent Curve Models for the Study of Change in Multivariate Repeated Measures. Psychological Methods, 9(3), 334-353.
  • Bock, R.D. (1960). Components of Variance Analysis as a Structural and Discriminal Analysis for Psychological Tests. British Journal of Mathematical and Statistical Psychology, 13, 151-163.
  • Bock, R.D. & Bargmann, R.E. (1966). Analysis of Covariance Structures. Psychometrika, 31, 507-534.
  • Browne, M.W. (1974). Generalised Least Squares Estimators in the analysis of covariance structures. South African Statistical Journal, 8, 1-24. (Reprinted in Aigner, D.J. & Goldberger, A.S. (eds), Latent variables in Socioeconomic
    Models, pp. 205-226. Amsterdam: North Holland.)
  • Browne, M.W. (1982). Covariance Structures. In D.M. Hawkins (Ed.), Topics in Applied Multivariate Analysis,
    pp. 72-141. Cambridge: Cambridge University Press.
  • Browne, M.W. & Cudeck, R. (1993). Alternative Ways of Assessing Model Fit. In K.A. Bollen & J.S. Long (Eds.), Testing Structural Equation Models, pp. 136-162. Beverley Hills, CA: Sage.
  • Browne, M.W. & Du Toit, S.H.C. (1992). Automated Fitting of Nonstandard Models. Multivariate Behavioral Research, 27, 269-300.
  • Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 1-21.
  • Chou, C.-P., & Bentler, P. M. (1990). Model modification in covariance structure modeling: A comparison among likelihood ratio, Lagrange multiplier, and Wald tests. Multivariate Behavioral Research, 25, 115-136.
  • Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin, 105, 317-327.
  • Davis, W.R. (1993). The FC1 rule of identification for confirmatory factor analysis: A general sufficient condition. Sociological Methods & Research, 21(4), 403-437.
  • Fornell, C., & Yi, Y. (1992a). Assumptions of the two-step approach to latent variable modeling. Sociological Methods & Research, 20 (1), 291-320.
  • Fornell, C., & Yi, Y. (1992b). Assumptions of the two-step approach: Reply to Anderson and Gerbing. Sociological Methods & Research, 20 (1), 334-339.
  • Gerbing, D.W., & Anderson, J.C. (1987). Improper solutions in the analysis of covariance structures: Their interpretability and a comparison of alternate respecifications. Psychometrika, 52, 99-111.
  • Jöreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32(4), 443-482.
  • Jöreskog, K.G. (1969). A General Approach to Confimatory Maximum Likelihood Factor Analysis. Psychometrika, 34, 183-202.
  • Jöreskog, K.G. (1970). A General Method for Analysis of Covariance Structures. Biometrika, 57, 239-251.
  • Jöreskog, K.G. (1977). Structural Equation Models in the Social Sciences: Specification estimation and testing.
    In P.R. Krishnaiah (Ed.), Applications of Statistics, pp. 265-287. Amsterdam: North Holland.
  • Jöreskog, K.G. (1978). Structural Analysis of Covariance and Correlation matrices. Psychometrika, 43, 443-473.
  • Kaplan, D. (1989). Model modification in covariance structure analysis: Application of the expected parameter change statistic. Multivariate Behavioral Research, 24, 285-305.
  • Kaplan, D., & Wenger, R.N. (1993). Asymptotic independence and separability in covariance structure models: Implications for specification error, power, and model modification. Multivariate Behavioral Research, 28, 483-498.
  • Kaplan, D., Statistical power in structural equation modeling. In R. H. Hoyle (Ed.), Structural equation modeling: concepts, issues and applications, pp. 100-117, Sage, 1995.
  • Lee, S.Y. (1985). Analysis of covariance and correlation structures. Computational Statistical Data Analysis, 2, 279-295.
  • Lee, S.Y. & Bentler, P.M. (1980). Some Asymptotic Properties of Constrained Generalized Least Squares Estimation in Covariance Structure Models. South African Statistical Journal, 14, 121-136.
  • Lee, S.Y. & Jennrich, R.I. (1979). A study of algorithms for covariance structure analysis with specific comparisons using factor analysis. Psychometrika, 44, 99-113.
  • Lee, S., & Hershberger, S. (1990). A simple rule for generating equivalent models in structural equation modeling. Multivariate Behavioral Research, 25, 313-334.
  • Lee, S.-Y., Poon, W.-Y., & Bentler, P.M. (1992). Structural equation models with continuous and polytomous variables. Psychometrika, 57, 89-105.
  • MacCallum, R.C., Wegener, D.T., Uchino, B.N., & Fabrigar, L.R. (1993). The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114, 185-199.
  • McDonald, R.P. (1978). A Simple Comprehensive Model for the Analysis of Covariance Structures. British Journal of Mathematical and Statistical Psychology, 31, 59-72.
  • Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, pp. 519-530.
  • McArdle, J.J., & McDonald, R.P. (1984) Some algebraic properties of the Recticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234-251.
  • Muthen, B., & Kaplan, D. (1985). A comparison of methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189.
  • Muthen, B., & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45, 19-30.
  • Reilly, T. (1995). A necessary and sufficient condition for identification of confirmatory factor analysis models of complexity one. Sociological Methods & Research, 23(4), 421-441.
  • Rigdon, E.E. (1995). A necessary and sufficient identification rule for structural models estimated in practice. Multivariate Behavioral Research, 30(3), 359-383.
  • Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika, 54, 131-151.
  • Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83-90.
  • Satorra, A. & Bentler, P.M. (1988). Scaling Corrections for Chi-square Statistics in Covariance Structure Analysis.
    Proceedings of the American Statistical Association, 308-313.
  • Satorra, A. & Bentler, P.M. (1994). Corrections for Test Statistics and Standard Errors in Covariance Structure Analysis. In A. Von Eye & C.C. Clogg (Eds.). Latent Variable Analysis: Applications for Developmental Research, pp. 399-419. Thousand Oaks, CA: Sage.
  • Shapiro, A. (1983). Asymptotic Distribution Theory in the Analysis of Covariance Structures (A Unified Approach). South African Statistical Journal, 17, 33-81.
  • Shapiro, A. (1984). A Note on the Consistency of Estimators in the Analysis of Moment Structures. British Journal of Mathematical and Statistical Psychology, 37, 84-88.
  • Shapiro, A. (1985). Asymptotic Equivalence of Minimum Discrepancy Function Estimators to G.L.S. Estimators. South African Statistical Journal, 19, 73-81.
  • Shapiro, A. (1986). Asymptotic Theory of Overparameterized Structural Models. Journal of the American Statistical Association, 81, 142-149.
  • Shapiro, A. (1987). Robustness properties of an MDF analysis of moment structures. South African Statistical Journal, 21, 33-81.
  • Shapiro, A. & Browne, M.W. (1987). Analysis of covariance structures under elliptical distributions. Journal of the American Statistical Association, 82, 1092-1097.
  • Shapiro, A. & Browne, M.W. (1990). On the Treatment of Correlation Structures as Covariance Structures. Linear Algebra and its Applications, 127, 547-567.
  • Steiger, J.H. & Lind, J.C. (1980). Statistically-based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
  • Steiger, J.H., Shapiro, A. & Browne, M.W. (1985). On the asymptotic distribution of sequential chi-square statistics.
    Psychometrika, 50, 253-264.
  • Stelzl, I. (1986). Changing the causal hypothesis without changing the fit: Some rules for generating equivalent path models. Multivariate Behavioral Research, 21, 309-331.
  • Yuan, K.H. & Bentler, P.M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements.Journal of the American Statistical Association, 92, 767-774.

top

  Journals

top

  Studies
  • U.S. Dept. of Health and Human Services, Substance Abuse and Mental Health Services Administration, Office of Applied Studies. ALCOHOL AND DRUG SERVICES STUDY (ADSS), 1996-1999: [UNITED STATES] [Computer file]. Conducted by Brandeis University. ICPSR03088-v3. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [producer and distributor], 2006-06-09.
  Other useful links

top back


Copyright © 2005-2014, Scientific Software International, Inc., All rights reserved.
P.O. Box 4728, Skokie, IL 60076-4728